η is a time that a wafer is moved by the robot from Step i to Step j;

$$E=\{i|\pi_{iU}>\pi_{Lmax}, i \in \mathbb{N}_4\}; \text{ and } F=\mathbb{N}_4 \setminus E.$$

- 2. The method of claim 1, further comprising: determining a production cycle of the system.
- 3. The method of claim 1, wherein the determination of the robot waiting time is based on a Petri Net model.
 - 4. The method of claim 1, wherein the h is 2.
- **5.** A non-transitory computer-readable medium whose contents cause a computing system to perform a computer-implemented method for scheduling a cluster tool, the cluster tool comprising a single-arm robot for wafer handling, a wafer-processing system comprising four process modules including PM_1 , PM_2 , PM_3 , and PM_4 , each for performing a wafer-processing step with a wafer residency time constraint where the ith process module, i∈ $\{1, 2, \ldots 4\}$, is used for performing Step i of the wafer-processing steps for each wafer, and a wafer flow pattern having $(PM_1, (PM_2, PM_3)^h, PM_4)$ with $(PM_2, PM_3)^h$ being the revisiting process and h≥2, the method comprising:

obtaining, by a processor, a lower bound z_{iL} of a production cycle of Step i,ie $\{1, 2, \dots, 4\}$, as follows:

$$\begin{split} &\pi_{1L}\!\!=\!\!\alpha_1\!\!+\!\!3\mu\!\!+\!\!4\lambda;\\ &\pi_{2L}\!\!=\!\!2\alpha_2\!\!+\!\!\alpha_3\!\!+\!\!5\mu\!\!+\!\!8\lambda;\\ &\pi_{3L}\!\!=\!\!2\alpha_3\!\!+\!\!\alpha_2\!\!+\!\!5\mu\!\!+\!\!8\lambda;\text{ and}\\ &\pi_{4L}\!\!=\!\!\alpha_4\!\!+\!\!3\mu\!\!+\!\!4\lambda; \end{split}$$

obtaining, by a processor, an upper bound π_{iU} of a production cycle of Step i, i \in {1, 2, . . . , 4}, as follows:

$$\begin{split} &\pi_{1U} = \alpha_1 + 3\mu + 4\lambda; \\ &\pi_{2U} = 2\alpha_2 + \alpha_3 + 5\mu + 8\lambda; \\ &\pi_{3U} = 2\alpha_3 + \alpha_2 + 5\mu + 8\lambda; \text{ and} \\ &\pi_{4U} = \alpha_4 + 3\mu + 4\lambda; \end{split}$$

obtaining, by a processor, a maximum lower bound π_{Lmax} as follows:

$$\pi_{Lmax} = \max\{\pi_{iL}, i \in \mathbb{N}_4\};$$

obtaining, by a processor, a minimum upper bound π_{Umin} as follows:

$$\pi_{Umin} = \min\{\pi_{iU}, i \in \mathbb{N}_4\};$$

determining, by a processor, a robot task time η_1 in a cycle as follows:

$$\eta_1 = 14\lambda + 12\mu + \alpha_2 + \alpha_3$$
;

determining, by a processor, a robot waiting time ω_i of Step i as follows:

if
$$[\pi_{1L},\pi_{1U}]\cap[\pi_{2L},\pi_{2U}]\cap[\pi_{3L},\pi_{3U}]\cap[\pi_{4L},\pi_{4U}]\neq\emptyset$$
 and $\eta_1<\pi_{Lmax}$, then setting $\omega_0=\omega_1=\omega_2=\omega_3=0$, and setting $\omega_4=\pi_{Lmax}-\eta_1$;

else if
$$[\pi_{1L},\pi_{1U}] \cap [\pi_{2L},\pi_{2U}] \cap [\pi_{3L},\pi_{3U}] \cap [\pi_{4L},\pi_{4U}] \neq \emptyset$$

and $\pi_{Lmax} \leq \eta_1 \leq \pi_{Umin}$, then setting
 $\omega_0 = \omega_1 = \omega_2 = \omega_3 = 0$;

else if
$$[\pi_{1L},\pi_{1U}] \cap [\pi_{2L},\pi_{2U}] \cap [\pi_{3L},\pi_{3U}] \cap [\pi_{4L},\pi_{4U}] = \emptyset$$
 and $\pi_{Lmax} \leq \eta_1 \leq \pi_{Umin}$, then setting $\omega_n i \in \Omega_3$ by

$$\omega_{i-1} = \begin{cases} 0, & i \in F \\ \pi_{Lmax} - \alpha_i - \delta_i - 4\lambda - 3\mu, & i \in E \cap \{1, 4\} \\ \pi_{Lmax} - 2\alpha_2 - \delta_2 - \alpha_3 - 5\mu - 8\lambda, & i \in E \cap \{2\} \\ \pi_{Lmax} - 2\alpha_3 - \delta_3 - \alpha_2 - 5\mu - 8\lambda, & i \in E \cap \{3\} \end{cases}$$

and setting
$$\omega_4 = \pi_{Lmax} - \eta_1 - \sum_{i=0}^{3} \omega_i$$
;

wherein:

 $\alpha_i, \ i \in \mathbb{N}_4$, is a time that a wafer is processed in the ith process module;

 δ_i ie N₄, is a longest time that a wafer stays in the ith process module after being processed;

 λ is a time that a wafer is loaded or unloaded by the robot from Step i;

 μ is a time that a wafer is moved by the robot from Step i to Step j;

$$\begin{array}{l} \mathbf{E} = \left\{ \mathbf{i} | \pi_{iU} < \pi_{Lmax}, \ \mathbf{i} \in \mathbf{N}_{4} \right\}; \ \text{and} \\ \mathbf{F} = \mathbf{N}_{4} \backslash \mathbf{E}. \end{array}$$

- **6**. The non-transitory computer-readable medium of claim **5**, wherein the method further comprises: determining a production cycle of the system.
- 7. The non-transitory computer-readable medium of claim 5, wherein the determination of the robot waiting time is based on a Petri Net model.
- **8**. The non-transitory computer-readable medium of claim **5**, wherein the h is 2.

* * * * *